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FEM simulation of microwave dielectric properties for biphase ceramics
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Abstract

In the present work, microwave dielectric properties of biphase ceramics were calculated via finite element method (FEM) combined with Monte
Carlo (MC) simulation. Parameters such as volume fractions, and dielectric constant ratio of two phases were taken into account. Random
distribution of tow phases was generated by MC method. Both dielectric constant and Qf values were calculated and then numerical fittings were
carried out. The simulation results of the dielectric constant were then compared with experiment data and excellent agreement was achieved.
© 2005 Elsevier Ltd. All rights reserved.
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. Introduction

Since the time of Maxwell, lots of empirical equations have
een derived to predict dielectric constant εr of composites based
n experimental results and theoretical derivation, because in
any cases it is very important to precisely predict the dielec-

ric properties.1,2 For biphase composite, the parallel model,
he serial model, the logarithm model and Maxwell–Wagner
quation are some of the most well-known ones. However, they
annot give satisfactory results in the full concentration range.
ecause it is too complicated to obtain analytical solutions in the

ull concentration range, many researchers have turned towards
he help of numeric methods recently.3–7

Wakino et al. obtained a new equation for predicting the
ielectric constant of a mixture via FEM combined with the
C simulation.3 The random distribution generated by the MC
ethod is comparatively close to the real situation in a material,

nd hence a reasonable result can be attained. After the report of
two-dimensional (2D) capacitor model by Wakino et al., Wang
t al. reported the result of three-dimensional (3D) model.4 There
as notable difference between results of these two models. The

loss tangent of a mixture and did not take into account of the
effect of dielectric constant ratio of two phases. In recent years,
Brosseau et al. have published a series of articles on the mod-
eling of both dielectric constant and loss tangent by FEM and
the boundary integral equation method.6 But their studies were
mainly concerned on biphase periodic composite and the effec-
tive dielectric constant of their 3D random composites model
was computed by considering the equivalent periodic material.7

In the family of microwave dielectric ceramics, biphase
ceramics play an important role,8–10 so in the present work,
capacitor models were built for biphase microwave dielectric
ceramics. The random distribution of biphase composite was
generated by MC method. Both dielectric constant and loss tan-
gent were calculated via FEM and the results were fitting to
obtain new equations. The modeling results were then compared
with experiments data.

2. Calculation method

In this paper, volume fraction, relative dielectric constant and
electric filling factor are denoted as V, εr and Pe, respectively.
ielectric constant of 3D model was much larger than that of 2D
odel. It contradicted with the conclusion by Wakino et al.:
hen 2D model was extended to the 3D case, there would not
e significant changes in results.3 More work should be done
o justify which is correct. Besides, they did not calculate the

Besides, subscripts “1”, “2” or none are added to distinguish
variables of material 1, material 2 and composite.

The FEM calculation procedures are introduced in many
literatures4,11 and books,12 so we would not mention it here,
e
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xcept for three points:

1) In our simulation, 20-node hexahedral elements were used.
2) The random distribution was generated via MC method

which had been mentioned by Wakino et al.3 But our model
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Fig. 1. The cubic is divided into 30 × 30 × 30 subcubic cells. One possible
random distribution generated by Monte Carlo method for V1:V2 = 0.5:0.5 is
shown.

is cubic and it was divided into 30 × 30 × 30 subcubic cells.
One possible random distribution is plotted in Fig. 1 for
V1:V2 = 0.5:0.5.

(3) Electric filling factor and Qf value are calculated using:

Pei = (1/2)
∫∫∫

Vi
εri �E �E∗ dV

(1/2)
∫∫∫

V
εr(V ) �E �E∗ dV

(1)

and

Qf =
(

1 − Pe2

Qf1
+ Pe2

Qf2

)−1

(2)

where the numerator on the right hand of Eq. (1) is the electric
energy stored in all elements of ith material, and the denominator
is the total electric energy stored in the whole capacitor.

In the simulation, εr1 was kept to be 1, and εr2 was chosen to
be 3, 10, 20 and 100. V2 was chosen to be 0, 0.01, . . ., 0.06, 0.08,
0.1, 0.2, . . ., 0.9, 0.94, 0.98 and 1. The simulation process was
repeated at least 20 times on each compound. Then the mean
value, as well as standard deviation was calculated.

3. Results and discussion

In Table 1, average values 〈εr〉, 〈Pe2〉and their standard devi-
ations (S.D.) with respect to the number of divisions (Ndiv) are
s
〈
t
p
t

Table 1
Average value 〈εr〉, 〈Pe2〉 and their standard deviations (S.D.) with a changing
number of divisions (Ndiv) when εr2 = 100 and V2 = 0.5

Ndiv 〈εr〉 S.D. 〈Pe2〉 S.D.

5 32.06 2.36 0.958 0.0089
10 32.59 0.96 0.959 0.0034
15 32.74 0.41 0.960 0.0015
20 33.00 0.32 0.961 0.0010
25 33.05 0.24 0.961 0.0008
30 33.18 0.13 0.961 0.0004
35 33.21 0.12 0.962 0.0004

was obtained by Wakino et al.3:

εα
r = V1ε

α
r1 + V2ε

α
r2, α = V2 − V0 (3)

where V0 is the critical volume fraction and equals to round
about 0.35 given εr1 < εr2. In Eq. (3), α is linear with respect to
V2. Because the form of Eq. (3) is a general one of many mixing
rules, it would be used to fit our simulated results with a different
expression of α. After 〈εr〉 of each compound was obtained,
index α was calculated and plotted as scatters in Fig. 2. As shown
in Fig. 2, index α is a function of mixing ratio and dielectric
constant ratio of two phases. For all ratios of εr2 to εr1, index α

increases when V2 grows. When εr2 = 3, the relation between α

and V2 is quasi-linear, but when εr2 increases, it becomes more
and more non-linear. Besides, when V2 is small, α decrease with
the dielectric constant ratio enlarges while when V2 is large, the
opposite situation occurs. After several trials, it was found that
the function shown in Eq. (4) fitted the calculated α best in a
least-squares sense. The coefficients are listed in Table 2.

εα
r = V1ε

α
r1 + V2ε

α
r2, α = A2 + A1 − A2

(1 + (V2/u0)p)
(4)

Curves of α calculated by Eq. (4) are plotted as solid lines in
Fig. 2 for εr2 = 3, 10, 20 and 100. Good agreement is achieved
between simulation results and Eq. (4)

In Fig. 3, curves of 〈εr〉 calculated in our present work and the
d

F
t

hown for εr2 = 100 and V2 = 0.5. With increase of Ndiv, 〈εr〉,
Pe2〉 and their S.Ds. gradually converge; when Ndiv > 30, all
hese parameters change little. To balance consuming time and
recision of calculation, 30 × 30 × 30 divisions were considered
o be accurate enough for the simulation.The following equation
ielectric constants calculated by the parallel model, the serial

ig. 2. Index α of Eq. (4) with respect to volume fraction V2 and relative dielec-
ric constant �r2 of material 2.
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Table 2
Coefficients of α in Eq. (4) and Pe2 in Eq. (5) for εr2:εr1 = 3, 10, 20 and 100

εr2:εr1 A1 A2 u0 p B2 w0 q

3 0.301 0.812 1.186 1.055 1.914 0.927 1.190
10 0.164 0.849 0.552 1.078 1.165 0.338 1.660
20 0.093 0.832 0.387 1.106 1.068 0.254 1.958

100 −0.032 0.780 0.214 1.215 1.007 0.166 2.751

model, the logarithmic mixing rule, the Maxwell–Wagner equa-
tion and Eq. (3) are plotted for εr2 = 100. The bold solid line is
plotted according to Eq. (4) and coefficients for εr2:εr1 = 100 in
Table 2. It is in good agreement with simulated results, which
are plotted as open circles.

As shown in Fig. 3, the curve obtained in our present work is
closer to the curve of the parallel model than the one calculated
by Eq. (3). Just as mentioned before, a quite similar result had
been reported by Wang et al. Our model and Wang’s model
were both 3D, while Wakino’s one was 2D. For 2D model, the
dimensions parallel and perpendicular to electric flux are both 1,
while for 3D one, dimension perpendicular to electric flux retains
1, but the dimension parallel to electric flux increases to 2. We
can consider an extreme simple example: when V1:V2 = 0.5:0.5,
for a 2D model with 2 × 2 grid size, the probabilities of parallel
case and serial case are both 1/3 and their ratio is 1:1; while for
a 3D model with 2 × 2 × 2 grid size, the probabilities of parallel
case and serial case are 3/35 and 1/35 and their ratio becomes
3:1. So according to the statistical distribution theory, the most
possible distribution of 3D MC model is closer to the parallel
model, compared with 2D MC model; this conclusion can extend
to models with larger grid size.

The electric filling factor Pe2 is also calculated for εr2:εr1 = 3,
10, 20 and 100, and plotted as scatters in Fig. 4. As Fig. 4 (a)
shown, with increase of V2, Pe2 grows from zero to one; when V2
retains the same and ε enlarges, P increases; when ε = 3, the
c
t
c
s

F
ε

Fig. 4. (a) Electric filling factor Pe2 calculated by FEM and Eq. (5) in the full
concentration range. (b) Magnification of the part which is enclosed in a dash
dot rectangular in (a).

Pe2 both reflect the energy distribution in two phases. So the
function used to fit α was found to fit Pe2 best too and rewritten
as Eq. (5). The coefficients of Eq. (5) for εr2:εr1 = 3, 10, 20 and
100 are listed in Table 2.

Pe2 = B2 − B2

1 + (V2/w0)q
(5)

The solid lines in Fig. 4(a) are plotted by Eq. (5) and correspond-
ing coefficients. It is very interesting to note that these curves
intercept each other when V2 is small, just as the region enclosed
in a dash dot rectangular shown. This region is magnified and
more points of V2 are added in Fig. 4(b). We can note that with
increase of εr2, Pe2 first increases and then drops given V2 keeps
the same and is sufficiently small. This can be explained by Eq.
(1). When V2 is small, the total energy, i.e. the dinominator of
Eq. (1) change little with increase of εr2, but the energy stored
in material 2 first increase because of the increase of εr2 and
then drops because of quick decay of the square of electric field
strength magnitude.

For εr2 = 3 and 100: when V2 ≤ 0.07, Pe2 of the latter is
smaller than that of the former. It means than the Qf value of
the latter is larger than that of the former when V2 ≤ 0.07, given
r2 e2 r2
hange of Pe2 versus V2 is quasi-linear, but when εr2 increases,
he shape of curve becomes more and more like a hill. If we
ompare Fig. 2 and Fig. 4(a), we will find that there are many
imilarities between them, and this is because the index α and

ig. 3. Comparison of several predictive equations of dielectric constant given

r1 = 1 and εr2 = 100.
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Fig. 5. Qf value for εr2 = 3 and 100, given Qf1 = 10000 GHz and Qf2 = 1000 GHz.

Qf1 = 10,000 GHz and Qf2 = 1000 GHz, just as shown in Fig. 5.
We expect Qf value calculated by Eq. (2) will be close to the
actual value when one phase is sufficiently dilute and the bound-
ary effect of two phases is not prominent.

4. Experiment verification

To evaluate the performance of Eq. (4) with actual data, we
performed the following experiment. (1 − x)MgTiO3–xCaTiO3
ceramics with x = 0, 0.05, 0.25, 1/3, 0.5, 2/3, 0.75 and 1 were pre-
pared by a routine solid state reaction process where the reagent
grade MgO (97%), CaO (99.0%) and TiO2 (99.5%) powders
were used as the raw material. All samples were sintered at
1375 ◦C in air for 3 h. Diameter and height of each sample
were around 10.6 mm and 5 mm. Density ρ was measured by
Archimedes method and εr was measured at 2–10 GHz by Hakki
and Coleman method.13,14 Measured ρ for MgTiO3 and CaTiO3
were 3.67 g/cm3 and 3.94 g/cm3, measured εr for MgTiO3 and
CaTiO3 were 17.2 and 178.9. Then the volume fractions of
CaTiO3 were calculated by mole fractions of CaTiO3, molecular
weights and measured densities of MgTiO3 and CaTiO3. Then
Eq. (4) with coefficients listed in Table 2 for εr2:εr1 = 10, the par-
allel model, the serial model, the logarithmic mixing rule and Eq.
(3) obtained by Wakino et al. were used to calculate the dielectric
constant of (1 − x)MgTiO3–xCaTiO3. All the results are listed in
Table 3. XRD showed that MgTi O phase existed when x < 1; it

T
C
e

x

0
0
0
1
0
2
0
1

is very common that MgTi2O5 coexists with MgTiO3
15–17 and

it will not affect the validity of our results.
As shown in Table 3, an excellent agreement between Eq.

(4) and measured data was achieved. Some more work needs to
be done to evaluate Eq. (2) combined with Eq. (5) for a dilute
inclusion situation; it will be done in our future work.

5. Conclusion

Three-dimensional capacitor models were built and the effec-
tive dielectric constant and loss tangent of biphase composite
were calculated via FEM combined with Monte Carlo simula-
tion. From above discussion, we can conclude that:

(1) Simulation results show that 3D MC model is closer to the
parallel model than 2D MC model; this may be explained
by statistical distribution theory.

(2) The effective dielectric constant of biphase composite is a
non-linear function of dielectric constant ratio and volume
fractions of two phases. A new equation was obtained for
3D MC model:

εα
r = V1ε

α
r1 + V2ε

α
r2, α = A2 + A1 − A2

1 + (V2/u0)p

(

P

w

A

N
N
u
D

R

2 5

able 3
omparison between measured data and results calculated by several predictive
quations for (1 − x)MgTiO3–xCaTiO3 ceramics

ρ (g/cm3) V2 εr

Meas. Eq. (4) Para. Serial Log. Wakino

3.67 0 17.2 17.2 17.2 17.2 17.2 17.2
.05 3.68 0.053 20.1 20.1 25.7 18.1 19.5 18.8
.25 3.74 0.260 37.7 39.5 59.2 22.5 31.6 30.2
/3 3.76 0.345 49.1 51.0 73.0 25.0 38.6 38.5
.5 3.82 0.513 77.7 78.6 100.2 32.1 57.2 63.9
/3 3.84 0.678 110.0 110.2 126.9 44.5 84.2 100.5
.75 3.86 0.760 127.7 126.9 140.1 54.9 101.9 120.9

3.94 1 178.9 178.9 178.9 178.9 178.9 178.9
where the coefficients are listed in Table 2. Experiments of
MgTiO3-CaTiO3 verified its validity.

3) The electric filling factor for 3D MC model can be fitted as
following:

e2 = B2 − B2

1 + (V2/w0)q

here the coefficients are listed in Table 2.
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